翻訳と辞書
Words near each other
・ Bounlap Khenkitisack
・ Bounlare
・ Bounleuth Saycocie
・ Bounnan Bounyaseng
・ Boundary layer control
・ Boundary layer suction
・ Boundary layer thickness
・ Boundary line
・ Boundary marker
・ Boundary Markers of the Original District of Columbia
・ Boundary microphone
・ Boundary Oak School
・ Boundary object
・ Boundary parallel
・ Boundary Park
Boundary particle method
・ Boundary Pass
・ Boundary Peak
・ Boundary Peak (Maine/Quebec)
・ Boundary Peak (Nevada)
・ Boundary Peak 79
・ Boundary Peak 83
・ Boundary Peak 96
・ Boundary Peak Wilderness
・ Boundary problem (spatial analysis)
・ Boundary problem in geography
・ Boundary Range
・ Boundary Ranges
・ Boundary Red Mountain Mine
・ Boundary representation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Boundary particle method : ウィキペディア英語版
Boundary particle method

In applied mathematics, the boundary particle method (BPM) is a boundary-only meshless (meshfree) collocation technique, in the sense that none of inner nodes are required in the numerical solution of nonhomogeneous partial differential equations. Numerical experiments show that the BPM has spectral convergence. Its interpolation matrix can be symmetric.
== History and recent developments ==
In recent decades, the dual reciprocity method (DRM)〔Partridge PW, Brebbia CA, Wrobel LC, The dual reciprocity boundary element method. Computational Mechanics Publications, 1992〕 and multiple reciprocity method (MRM)〔Nowak AJ, Neves AC, The multiple reciprocity boundary element method. Computational Mechanics Publication, 1994〕 have been emerging as promising techniques to evaluate the particular solution of nonhomogeneous partial differential equations in conjunction with the boundary discretization techniques, such as boundary element method (BEM). For instance, the so-called DR-BEM and MR-BEM are popular BEM techniques in the numerical solution of nonhomogeneous problems.
The DRM has become a common method to evaluate the particular solution. However, the DRM requires inner nodes to guarantee the convergence and stability. The MRM has an advantage over the DRM in that it does not require using inner nodes for nonhomogeneous problems. Compared with the DRM, the MRM is computationally more expensive in the construction of the interpolation matrices and has limited applicability to general nonhomogeneous problems due to its conventional use of high-order Laplacian operators in the annihilation process.
The recursive composite multiple reciprocity method (RC-MRM),〔Chen W, Meshfree boundary particle method applied to Helmholtz problems. Engineering Analysis with Boundary Elements 2002,26(7): 577–581〕〔Chen W, Fu ZJ, Jin BT, A truly boundary-only meshfree method for inhomogeneous problems based on recursive composite multiple reciprocity technique. Engineering Analysis with Boundary Elements 2010,34(3): 196–205〕 was proposed to overcome the above-mentioned problems. The key idea of the RC-MRM is to employ high-order composite differential operators instead of high-order Laplacian operators to eliminate a number of nonhomogeneous terms in the governing equation. The RC-MRM uses the recursive structures of the MRM interpolation matrix to reduce computational costs.
The boundary particle method (BPM) is a boundary-only discretization of an inhomogeneous partial differential equation by combining the RC-MRM with strong-form meshless boundary collocation discretization schemes, such as the method of fundamental solution (MFS), boundary knot method (BKM), regularized meshless method (RMM), singular boundary method (SBM), and Trefftz method (TM). The BPM has been applied to problems such as nonhomogeneous Helmholtz and convection-diffusion equation. The BPM interpolation representation is of a wavelet series.
For the application of the BPM to Helmholtz,〔 Poisson〔 and plate bending problems,〔Fu ZJ, Chen W, Yang W, Winkler plate bending problems by a truly boundary-only boundary particle method. Computational Mechanics 2009,44(6): 757–563〕 the high-order fundamental solution or general solution, harmonic function〔Hon YC, Wu ZM, A numerical computation for inverse boundary determination problem. Engineering Analysis with Boundary Elements 2000,24(7–8): 599–606〕 or Trefftz function (T-complete functions)〔Chen W, Fu ZJ, Qin QH, Boundary particle method with high-order Trefftz functions. CMC: Computers, Materials & Continua 2010,13(3): 201–217〕 are often used, for instance, those of Berger, Winkler, and vibrational thin plate equations.〔Chen W, Shen ZJ, Shen LJ, Yuan GW, General solutions and fundamental solutions of varied orders to the vibrational thin, the Berger, and the Winkler plates. Engineering Analysis with Boundary Elements 2005,29(7): 699–702〕 The method has been applied to inverse Cauchy problem associated with Poisson〔Fu ZJ, Chen W, Zhang CZ, Boundary particle method for Cauchy inhomogeneous potential problems. Inverse Problems in Science and Engineering 2012,20(2): 189–207〕 and nonhomogeneous Helmholtz equations.〔Chen W, Fu ZJ, Boundary particle method for inverse Cauchy problems of inhomogeneous Helmholtz equations. Journal of Marine Science and Technology–Taiwan 2009,17(3): 157–163〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Boundary particle method」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.